6 research outputs found

    Dark matter protohalos in MSSM-9 and implications for direct and indirect detection

    Get PDF
    We study how the kinetic decoupling of dark matter (DM) within a minimal supersymmetric extension of the standard model, by adopting nine independent parameters (MSSM-9), could improve our knowledge of the properties of the DM protohalos. We show that the most probable neutralino mass regions, which satisfy the relic density and the Higgs mass contraints, are those with the lightest supersymmetric neutralino mass around 1 TeV and 3 TeV, corresponding to Higgsino-like and Wino-like neutralino, respectively. The kinetic decoupling temperature in the MSSM-9 scenario leads to a most probable protohalo mass in a range of Mph∼10−12−10−7 M⊙M_{\mathrm{ph}}\sim 10^{-12}-10^{-7}\,M_\odot. The part of the region closer to 2 TeV gives also important contributions from the neutralino-stau co-annihilation, reducing the effective annihilation rate in the early Universe. We also study how the size of the smallest DM substructures correlates to experimental signatures, such as the spin-dependent and spin-independent scattering cross sections, relevant for direct detection of DM. Improvements on the spin-independent sensitivity might reduce the most probable range of the protohalo mass between ∼\sim10−9 M⊙^{-9}\,M_\odot and ∼\sim10−7 M⊙^{-7}\,M_\odot, while the expected spin-dependent sensitivity provides weaker constraints. We show how the boost of the luminosity due to DM annihilation increases, depending on the protohalo mass. In the Higgsino case, the protohalo mass is lower than the canonical value often used in the literature (∼\sim10−6 M⊙^{-6}\,M_\odot), while ⟨σv⟩\langle\sigma v\rangle does not deviate from ⟨σv⟩∼10−26\langle\sigma v\rangle\sim 10^{-26} cm3^3 s−1^{-1}; there is no significant enhancement of the luminosity. On the contrary, in the Wino case, the protohalo mass is even lighter, and ⟨σv⟩\langle\sigma v\rangle is two orders of magnitude larger; as its consequence, we see a substantial enhancement of the luminosity.Comment: 26 pages, 8 figure

    Indirect and direct detection prospect for TeV dark matter in the MSSM-9

    Get PDF
    We investigate the prospects of indirect and direct dark matter searches within the minimal supersymmetric standard model with nine parameters (MSSM-9). These nine parameters include three gaugino masses, Higgs, slepton and squark masses, all treated independently. We perform a Bayesian Monte Carlo scan of the parameter space taking into consideration all available particle physics constraints such as the Higgs mass of 126 GeV, upper limits on the scattering cross-section from direct-detection experiments, and assuming that the MSSM-9 provides all the dark matter abundance through thermal freeze-out mechanism. Within this framework we find two most probable regions for dark matter: 1-TeV higgsino-like and 3-TeV wino-like neutralinos. We discuss prospects for future indirect (in particular the Cherenkov Telescope Array, CTA) and direct detection experiments. We find that for slightly contracted dark matter profiles in our Galaxy, which can be caused by the effects of baryonic infall in the Galactic center, CTA will be able to probe a large fraction of the remaining allowed region in synergy with future direct detection experiments like XENON-1T.Comment: 8 pages, 3 figure

    Constraints on sneutrino dark matter from LHC Run 1

    Get PDF
    A mostly right-handed sneutrino as the lightest supersymmetric particle (LSP) is an interesting dark matter candidate, leading to LHC signatures which can be quite distinct from those of the conventional neutralino LSP. Using SModelSv1.0.1 for testing the model against the limits published by ATLAS and CMS in the context of so-called Simplified Model Spectra (SMS), we investigate to what extent the supersymmetry searches at Run 1 of the LHC constrain the sneutrino-LSP scenario. Moreover, we discuss the most relevant topologies for which no SMS results are provided by the experimental collaborations but which would allow to put more stringent constraints on sneutrino LSPs. These include, for instance, the mono-lepton signature which should be particularly interesting to consider at Run 2 of the LHC.Comment: 30 pages, 23 figures, matches published versio
    corecore